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A rotating drum partially immersed in a viscoplastic fluid is considered and the 
thickness of the film as well as the amount of fluid entrained by it are deter- 
mined. 

In many technological processes, various surfaces are coated with fluids. Typical 
examples are deposition of protective or decorative coatings on paper, cloth, and metal or 
manufacture of photographic materials and sound recording tapes. The equipment used for 
deposition of fluid coatings often includes rotating drums, cylinders, or rollers which 
drag the fluid out of the vat and feed it onto the substrate. It is then possible to de- 
termine the thickness of the deposited layer if the characteristics of fluid entrainment by 
a rotating surface have been established. 

We consider a rotating drum (Fig. la) partially immersed in a Shvedov--Bingham visco- 
plastic fluid 

(sign O~) Ou Ou =0, i~[~%" 

We will calculate the thickness of the film h and the amount of fluid (flow rate) q entrained 
by a unit of drum surface area in a unit of time. In the steady state the fluid flow rate q 
remains uniform around the drum circumference, i.e., independent of the angle ~, unlike the 
film thickness h, which is generally a function of the angle ~. The drum radius is assumed 
to be much larger than the film thickness h. Then the segment of the drum surface emerging 
from the fluid can, within an acceptable accuracy, be approximated as a plane surface 
emerging from the fluid at some angle ~0 [I]. This angle ~0 will be called the angle of 
drum immersion in the fluid. The pulling of a plane surface obliquely out of a viscoplastic 
fluid (Fig. ib) has been analyzed in an earlier study [2]. 

Following that earlier procedure [2], we write the equations of motion for the fluid 
film within the entrainment region as 

O~ Op 
ag ax 

with the boundary conditions 

pg sin q~o : O, ap pg cos q~o 
Oh, 

d2h u = U  at  y = O ,  T = O  at y=h ,  p = p o - - ~ '  at g=h.  
dx 2 

The equation describing the shape of the fluid surface within the region of the static 
meniscus is 

dx 2d2h [1-~ (ddx~)2]-3/2- Ogx(l(7 -- c~ (P~ 

From the condition of collocation of the solutions in the entrainment region and in the re- 
gion of the static meniscus, this condition being that the surface curvature remain continu- 
ous at the boundary between both regions, one can obtain an expression for calculating the 
film thickness in the case of an oblique plane surface pulling out of the fluid. In the 
case of a Shvedov-Bingham viscoplastic fluid we obtain for the dimensionless film thickness 
[2] the expression 
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Fig. i. Schematic diagram depicting the entrain- 
ment of a fluid by (a) a rotating drum and (b) an 
oblique plate. 
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Fig. 2. Dependence of the film thickness 
Do on Ca with B = 0.3 (a) and B = 0.15 
(b): I) ~o = 60~ 2) ~o = 90~ 3) ~o = 
120~ 4) ~o = 150 ~ �9 

D o = D(B, %)-k  D(Ca, %). (1) 

Here 

D(B,%) B 1 { 1 - - c ~  ( s i n % ) a / 2 ] ~ / 2  } 
= - 1 q- 18.32B - -  1 , 

9.16 sm % 1 - -  cos % 
(2) 

D(Ca, %.) is determined from the relation 

D(Ca, %)== 0.944 ( sinq~176 ]'/2[ca__DZ(Ca, %)]2/3, 
\ 1 - -  cos % ! 

w i t h  t h e  d i m e n s i o n l e s s  d e p e n d e n t  and i n d e p e n d e n t  v a r i a b l e s  D, B, and Ca d e f i n e d  as  

D = h  - - s i n %  , B=%/(pg~sin%) I/2, Ca-= 
G 

(3) 

(4) 

The dependence of the film thickness Do on the entrainment velocity Ca and on the incli- 
nation angle ~0 and the plasticity parameter B is shown in Fig. 2. 

We will now determine the amount of fluid entrained by a rotating cylindrical drum. 
It is to be noted, first of all, that there exists a limiting thickness for a film of 
viscoplastic fluid beyond which it will cease to run down under the forces of gravity but 
will, instead, move as one entity together with the pulling surface. This limiting film 
thickness at the point where the drum emerges from the fluid, i.e., at the immersion angle 
~0, can be determined from the balance of gravity and friction forces, viz. 
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h I = To 
9gsin  90 

or in dimensionless form (4) 

D ~ = B .  

When the thickness of the entrained film is Do ~ B, therefore, then the amount of entrained 
viscoplastic fluid will be 

or in dimensionless form 

q = Uh  o 

Q = CaD o. (5) 

When the inequality Do > B holds true, then the film of viscoplastic fluid will run down 
under the forces of gravity. For calculating the amount of entrained fluid, one must then 
use the relation [2] 

q = U h  ~ p g  sin 90 h~ ' "Co t,2 1:o 3 
3l ip  -c- - -  , 2 u p  '~~ 6~l,p (9g  sin %)z 

which in dimensionless form becomes 

Doa( 3 B + 1 B 3 ) 
Q =  CaD o - ~ -  1 2 Do 2 D~ " (6) 

We note that with Do = B expression (6) reduces to expression (5), which is valid for Do ~ B. 

We will next determine the film thickness around the circumference of a rotating drum. 
We use the continuity equation in the integral form, which expresses a constant rate of 
fluid flow. Accordingly, 

[ i ] Q = c a D ( T )  D3 s in~  1 3B sin% 5 
3 sin % 2D sin ~ ~ \si~-~-~ } 

o%9~<%. (7) 

Angles with the "--" sign are read counterclockwise, angles with the "+" sign are read clock- 
wise (Fig. i). Equation (7) is valid for film thicknesses 

D ~ B sin % 
sin q) 

Here expression B sin q00/sin ~ determines the magnitude of the limiting thickness of a 
viscoplastic film at some angle 9 (0 ~9~0 ). The limiting film thickness is minimum and 
equal to B sin q0o when ~ = 90 ~ , it increases boundlessly as angle becomes smaller or larger 
than 90 ~ When the film thickness around the drum circumference is smaller than limiting, 
i oe. , when 

D O ~ B sin 9o 
sin 9 (8) 

at any point 0~9~90 , then the film thickness is uniform and equal to Do around the drum 
circumference. For 9G~ 90 ~ condition (8) changes to Do ~ B, while for 90>90 ~ we obtain 
Do~B sin ~0. Expressions (1)-(4) indicate that, with 9o and B given, Do is a function of 
the dimensionless velocity Ca only. Condition (8) implies the existence of a certain 
critical dimensionless velocity Ca* such that at any Ca ~ Ca* the film thickness does not 

depend on the angleg. When 

O o ~ B  sin % 
sin ~ (9) 

then D generally does not depend on the angle 9, but flow regions will necessarily exist 
where the film thickness remains uniform. In order to determine these regions, it is neces- 
sary to let 

and 

Q=Ca D~. 
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in Eq. (7). We then obtain 

1---33 B sin% 
2 D~ sin qo~ 

B3 ( s i n % ) 3 =  0 
2D~ sin qD~ 

BCa sin q~ sin %. q (10) 

Consequently, at angles sin ~ < sin ~ the film thickness remains uniform in every case. 
We note that when ~0~ 90 ~ and B sin ~0~ Do~B, the rate of fluid flow Q is determined 
from the relation (5), and expression (i0) becomes 

B 
sin ~=--sin %. 

Do 

For determining the film thickness D around the circumference of a rotating drum, there- 
fore, one must use expressions (1)-(4), calculate the thickness Do of the film entrained by 
a flat plate pulling out at the angle ~0, then from either relation (5) or relation (6) find 
the rate of fluid flow Q, and finally from expressions (7)-(10) determine the film thickness 
as a function of the angle ~ 

NOTATION 

x, y, Cartesian coordinates; To, yield point; ~p, plastic viscosity; p, density; g, 
acceleration due to gravity; p, pressure; o, surface tension; and U, linear velocity of the 
drum surface. 
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COALESCENCE OF CONCENTRATED FINE-DISPERSE EMULSIONS 

DURING TURBULENT STIRRING 

A. K. Rozentsvaig and L. P. Pergushev UDC 66.066:541.041 

The coalescence of droplets due to an average gradient of velocity fluctuations 
is considered and its dependence on the concentration of the dispersed phase is 
analyzed within the framework of the theory of locally isotropic turbulence. 

The rate of separation of unstable emulsions which have formed during concurrent motion 
and mixing of mutually insoluble fluids determines the effectiveness of a great many techno- 
logical processes in the chemical, petroleum, food, and various other industries. The en- 
largement of droplets of the dispersed phase during turbulent flow of unstable emulsions 
through pipelines makes it possible to increase the productivity of sedimentation and ex- 
traction equipment [i]. 

An analysis of the interaction between fine-disperse droplets during the flow of emul- 
sions also facilitates the solution of problems pertaining to two-phase flow through pipe- 
lines. The true contents of each phase, the limits of existence of various stream struc- 
tures, and transitions from one structure to another depend largely on the coalescence of 
droplets, and this dependence affects the hydrodynamics of a two-phase stream as well as 
the heat and mass transfer in it. 

The object of this study will be to determine how the coalescence of droplets during 
turbulent flow of an emulsion through a pipeline depends on the concentration of the dis- 
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